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Abstract
We have studied some transport properties of cold atoms in an accelerated
optical lattice in the presence of decohering effects due to spontaneous
emission. One new feature added is the effect of an external ac drive. As
a result we obtain a tunable diffusion coefficient and its nonlinear enhancement
with increasing drive amplitude. We report an interesting maximum diffusion
condition.

PACS numbers: 03.75.−b, 03.65.Yz, 42.50.Vk, 32.80.Pj

1. Introduction

The seminal review paper [1] of Stig Stenholm on the theory of laser cooling gave a boost to cold
atom physics and optical laser technology [2, 3]. Cold atoms on optical lattices constitute clean
quantum systems as compared to solid state systems due to very less scattering and decohering
effects, and provide a paradigmatic model to test some novel quantum phenomena predicted
half a century back for metallic systems [4, 5]. The experimental advancements have further
provided a much more deeper understanding in fundamental quantum statistical laws, new
insights in quantum computing technologies, quantum phase transitions (superfluid to Mott-
insulating phase) in the regime of strong correlations [6], and Bose–Einstein condensation on
optical lattices [7–11].

In the present contribution, we consider single atom transport (in one dimension) on a
tilted optical lattice in the presence of an external ac field. To fix ideas, consider the physical
situation of an atom interacting with a laser field. We have a single atom A, with an excited
state |e〉 and a ground state |g〉 separated by an energy interval Ee − Eg = h̄ωA. The atom
Hamiltonian is HA = p2/2m + h̄ωA|e〉〈e| (with Eg = 0). The atom is subjected to a classical
laser field with an electric field E(x, t) = εE(x) e−iωLt , where ωL is the laser frequency and
ε is the polarization vector of the laser. If the amplitude of the electric field E(x) is varying
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BROKEN  BLOCH  BANDS (WANNIER  STARK LADDERS  OF  STATES)

TILTED  OPTICAL  LATTICE

ATOM

Figure 1. An atom in an accelerated optical periodic potential (in the co-moving frame of reference
it is a tilted or washboard potential).

(This figure is in colour only in the electronic version)

slowly in space x compared to the size of the atom, the atom–field interaction can be described
in the dipole approximation, i.e., by the coupling = −µE(x, t), where µ is the atomic dipole
moment. We assume that the laser is far detuned from any optical transition in the atom.
In this simplified picture one uses perturbation theory and eliminates internal atomic states
from the dynamics to obtain an effective potential V (x). The atom Hamiltonian thus becomes
HA = P 2/2m+V (x), with V (x) = |�(x)|2/4(ωL−ωA). The term �(x) = −2E(x)〈e|µε|g〉
is called the Rabi frequency which drives the transitions between the two atomic levels. Now
consider that the atom is in a non-resonant standing light (E(x, t) = 2εE0 cos kLx cos ωLt =
εE0[cos(ωLt − kLx) + cos(ωLt + kLx)], two counter propagating waves). This constitutes
‘The Basic’ optical periodic potential U(x) = U0 cos2(kLx), which can be accelerated by
frequency chirping. Lattice potential is tilted in the reference frame of the atom (co-moving
frame), and the atomic motion is governed by quantum mechanics of a particle on a periodic
lattice (figure 1). When there is no acceleration (no tilt), an initially localized wavepacket
will spread through resonant Bloch tunneling and become delocalized. But in a tilted lattice
(optical lattice being accelerated analogously electron and crystalline lattice is in an external
constant electric field) atoms can remain localized due to suppression of Bloch tunneling. They
exhibit novel quantum phenomenon of Bloch oscillations due to the repeated Bragg scattering
[12]. In the case of electrons in metals this corresponds to an induced ac current with applied
dc voltage across the sample. But in usual practice this purely quantum effect is overshadowed
by scattering processes and we obtain ohomic dc current. The second interesting effect of
potential tilt is that the Bloch bands are broken up into Wannier–Stark (WS) Ladders of states
[13, 14]. The level spacing between two nearby levels in the ladder is given by eEd (e is
the electron charge, E is the applied constant electric field and d is the lattice spacing, for
the case of an optical lattice, level spacing = Fd = mad, a is the imparted acceleration,
and d = π/kL is the period of optical potential). As the tilt of potential per lattice spacing
becomes comparable to well depth, a new interband tunneling process called Landau–Zener
tunneling becomes important which is a natural extension of the stark effect for a single
atom.

Now the above-stated phenomena are purely quantum in nature. But the relaxation
processes are natural. No system is an ideally decoupled system for all space and time scales.
In the case of cold atoms on optical lattices the main relaxation process is the spontaneous
emission of photons by excited atoms. Since photons have finite momentum, its generation
gives a recoil kick to the atom(mechanical effects of light). These relaxation processes
decohere pure quantum effects. The decay of Bloch oscillations and the diffusive spreading
of the atoms is shown to be caused by spontaneous emission [15]. Interestingly, the presence
of relaxation processes is actually important for practical purposes, like ohomic current across
metals (Joule heating effects) and atomic current across an optical lattice etc [16].
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In the present contribution we consider the effect of an external ac drive on the quantum
transport of cold atoms on a tilted optical lattice, and the effect of spontaneous emission that
causes decoherence, which is essential for diffusive motion. We have obtained a tunable
diffusion coefficient and its nonlinear enhancement with increasing drive amplitude and we
also report a novel maximum diffusion condition. The analytical results obtained by us
correctly specialize to the exact results known in the limit of zero drive and zero bias. Also, in
addition to cold atoms, the results obtained are applicable to experimentally realizable super
lattice hetero-structures that support the Stark–Wannier (SW) ladder states in the presence
of a strong longitudinal electric-field bias [4, 13, 19, 21]. As is well known, a strong field
normal to the superlattice planes can break up the extended Bloch-like band continuum into
energetically well- resolved states localized in the potential wells. The stronger the biasing
field the more localized the SW state [13, 14].

This paper is organized as follows. In section 2, we introduce the model Hamiltonian
and the simplified master equation for the present system. In section 2.1 we consider the
simple case of no acceleration and no external ac drive, and in section 2.2, a tilted lattice in
the presence of an external ac drive. We end with a brief discussion of results.

2. Model Hamiltonian and a simplified master equation

We have three interacting physical systems: (1) the atom, (2) the laser field and (3) the vacuum.
Up to this point we have not considered atom–vacuum field coupling, which is responsible for
spontaneous emission of photons by the excited atom. The random recoil kicks (mechanical
effects of spontaneously emitted photon momentum) cause decoherence of atomic motion,
which is the main object under study. Spontaneous emission is characterized by the natural
width of the excited state or the radiative life-time of the state (= 1/γ ). If we are interested
in very short interaction times (t � 1/γ ), we can neglect spontaneous emission, and the
evolution of the atom–laser system is described by the Schrodinger equation. But for long
interaction times (t � 1/γ ), due to the presence of several spontaneous emissions, one cannot
use the Schrodinger equation. In this situation one uses a system–environment approach i.e.,
the reduced atomic evolution (traced over infinitely many vacuum field (environment) degrees
of freedom) is then given by a master equation. In the present situation of far detuning
(δ0 = ωL − ω0 � � (atomic Rabi frequency), the time evolution of the reduced density
matrix ρ of the atomic motion along the x direction is given by a simplified master equation
[15] (detailed theory is given in [2, 17–20]):

∂ρ

∂t
= − i

h̄
[H, ρ] − γ

2

∫
dup(u)

[
L†

uLuρ + ρL†
uLu − 2LuρL†

u

]
, (1)

where γ = γ0
�2

δ2
0

(γ0 is the inverse radiative lifetime of the excited state), � is the atomic Rabi

frequency, and δ0 is static detuning. The first term on the RHS gives the unitary evolution,
while the second term gives the non-unitary (incoherent) evolution causing the initially pure
density matrix (ρ = ρ2 at t = 0) to become mixed (ρ �= ρ2 for t > 0). Here p(u) is
the angle distribution of the spontaneously emitted photons, and for linearly polarized light,
p(u) � 1/2. The operator Lu is the projection of photon recoil operator along the atomic
direction of motion. The photon recoil operator represents the coupling of the internal atomic
dynamics (decay processes) and the external atomic motion (center-of-mass motion). In the
dipole and rotating-wave approximation,

Lu = cos(kLx) eiukLx |u| � 1. (2)

The physical effect of the photon recoil operator is to randomly change the atomic
quasimomentum. The Initial delta function distribution of atomic quasimomentum will be
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n                    n+1

−V

a

Figure 2. No acceleration case, all states having same energy.

smeared over the entire Brillouin zone and cause the decay of Bloch oscillations as observed in
[15]. Our approach is based on tight-binding one-band Hamiltonians similar to [15] (the new
feature added is the ac drive, section 2.2). In matrix element notation, our system Hamiltonian
and Recoil operator is

Hmn = −V

2
[δm,n+1 + δm,n−1] + Fdmδmn (3)

Lmn = (−1)m eiπumδmn (4)

Here, V (> 0) is the transfer matrix element between nearby states, F is the inertial force
acting on the atom, d = π/kL is the period of optical potential, and m is the localized Wannier
function |m〉 associated with the lth well of the optical periodic potential. In the following
sections we will proceed step by step, starting with un-accelerated potential.

2.1. No acceleration and no ac drive

We begin by considering first the simplest case of quantum motion of an atom moving on an
optical lattice (figure 2) under a tight-binding one-band Hamiltonian

H 0 = −(V/2)
∑

l

(|l〉〈l + 1| + |l + 1〉〈l|) (5)

where (−V ) is the nearest-neighbor transfer matrix element, and the sum is over the N sites
with N taken to be infinite. The effect of spontaneous emission, namely the incoherence, will
be introduced through a recoil operator defined in equation (4). The reduced density matrix
ρ for the particle then obeys the evolution master equation (equation (1)). In terms of matrix
elements, we have

∂ρmn

∂t
= − iV

2h̄
[ρm,n+1 + ρm,n−1 − ρm+1,n − ρm−1,n] − γρmn[1 − δmn]. (6)

With the initial condition,

ρmn(t = 0) = δm0δn0. (7)

In Fourier space, with β = −V
h̄

∂

∂t

∑
m,n

ρm,n e−imk1 eink2 = iβ

2

[∑
m,n

ρm,n+1 e−imk1 ei(n+1)k2 e−ik2 + · · ·
]

− γ
∑
m,n

ρm,n e−imk1 eink2 + γ
∑
m,n

δm,n e−imk1 eink2 , (8)

with

ρ̃(k1, k2, t) =
∑
m,n

ρm,n e−imk1 eink2 , δm,n = 1

2π

∫ π

−π

ei(m−n)q dq. (9)
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We get

∂

∂t
ρ̃(k1, k2, t) = [iβ(cos k2 − cos k1) − γ ]ρ̃(k1, k2, t) +

γ

2π

∫ π

−π

ρ̃(k1 − q, k2 − q, t) dq.

(10)

Defining center of mass and relative wave vectors as p = (k1 + k2)/2, u = k1 − k2 and writing
ρ̃(k1, k2, t) ≡ ρ(p, u, t) we have

∂

∂t
ρ(p, u, t) = [2iβ sin p sin(u/2) − γ ]ρ(p, u, t) +

γ

2π

∫ π

−π

ρ(p − q, u, t) dq. (11)

We further define the reduced density matrix by

χ(u, t) = 1

2π

∫ π

−π

ρ(p − q, u, t) dq = 1

2π

∫ π

−π

ρ(q, u, t) dq. (12)

As the dimensions of β and γ are (time)−1, we define the dimensionless parameters as τ = tβ

and � = γ

β
, and define

φ(p, u) = 2i sin p sin(u/2) − �. (13)

So with this, the evolution equation becomes

∂

∂τ
ρ(p, u, τ ) = φ(p, u)ρ(p, u, τ ) + �χ(u, τ). (14)

The detailed calculation of mean-squared displacement from the above equation is given in
appendix A. We finally obtain

〈x2(τ )〉 = − 1

�2
+

1

�
τ +

1

�2
e−�τ . (15)

Recalling τ = tβ, � = γ /β, β = V/h̄ and γ = γ0
�2

δ2
0

. We obtain

〈x2(t)〉 = −β2

γ 2
+

β2

γ
t +

β2

γ 2
e−γ t , (16)

which reduces to the classical case in the large time (t � 1/γ ) limit as 〈x2(t)〉 ∼ (β2/γ )t

giving the diffusion coefficient

D = β2

2γ
= V 2

2γ0h̄
2

[
ωL − ω0

�

]2

. (17)

In the small time limit it goes ballistically as t2 as expected, while the mean displacement
〈x(t)〉 is zero (no atomic current on an un-accelerated lattice).

2.2. An accelerated lattice in an external ac drive

When an acceleration is imparted to the lattice, the Block bands are broken up into Wannier–
Stark Ladder (WSL) of states with level spacing equal to Fd; in other words the lattice
Hamiltonian has a systematic bias. There is a constant energy mismatch between the successive
site energies (figure 3). Now consider that this system of discrete energy states is present in
an external ac laser field. We describe this physical picture by a tight-binding one-band
Hamiltonian

Hω = −E0 cos ωt
∑

l

[|l〉〈l + 1| + |l + 1〉〈l|] +
∑

l

αl|l〉〈l|. (18)

The wavelength of the external standing wave ac field is assumed to be much longer than
then lattice period, so as to subtend a relatively strong dipolar matrix element between the

5
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Figure 3. System with discrete energy levels (WS Ladder) with level spacing Fd.

neighboring WS states of the ladder. So, in the Hamiltonian, the term E0 cos ωt (time-
dependent drive of amplitude E0 and circular frequency ω) acts as a nearest-neighbour transfer
matrix element. It may be noted that in the limit ω = 0, this simulates the usual transfer matrix
element −V = −E0. As before, the time evolution of the reduced density matrix (in matrix
elements) is given by
∂ρmn

∂t
= iE0

h̄
[ρm+1,n + ρm−1,n − ρm,n−1 − ρm,n+1] − i

α

h̄
(mρmn − nρmn) − γ [1 − δmn]ρmn

(19)

The quantities E0
h̄

, α
h̄

and γ have a dimension of time−1. We define t0 = h̄
E0

, δ (dimensionless
acceleration) = α

E0
, � (dimensionless decohering factor) = t0γ , and τ (dimensionless time) =

t
t0

. With this we have

∂ρmn

∂τ
= i cos ωτ [ρm+1,n + ρm−1,n − ρm,n−1 − ρm,n+1] − iδ(mρmn − nρmn) − �[1 − δmn]ρmn

(20)

After applying the rotating wave approximation with ρmn = ρ̄mn e−iδ(m−n)τ , the evolution of
the reduced density matrix is
∂ρ̄mn

∂τ
= i

2
[ei(θ−δ)τ [ρ̄m+1,n − ρ̄m,n−1] + e−i(θ−δ)τ [ρ̄m−1,n − ρ̄m,n+1]] − �ρ̄mn[1 − δmn]. (21)

Here, we have defined θ = ωt0, τ = t/t0 ( t0 = h̄/E0) and � = θ − δ as the detuning between
drive frequency ω and scaled energy level spacing δ. Note that

¯̃ρ(k1, k2, τ ) =
∑
m,n

ρ̄mn(τ ) e−imk1 eink2

ρ̄m,n+1 → e−ik2 ¯̃ρ(k1, k2, τ ), ρ̄m+1,n → eik1 ¯̃ρ(k1, k2, τ )

ρ̄m,n−1 → eik2 ¯̃ρ(k1, k2, τ ), ρ̄m−1,n → e−ik1 ¯̃ρ(k1, k2, τ ).

(22)

∂ ¯̃ρ(k1, k2, τ )

∂τ
= (i[cos(k1 + �τ) − cos(k2 + �τ)] − �)

¯̃ρ(k1, k2, τ ) +
�

2π

∫ π

−π

¯̃ρ(k1 − q, k2 − q, τ ) dq.

(23)

Performing similar coordinate transformations p = (k1 + k2)/2, u = k2 − k1 and defining
¯̃ρ(k1, k2, τ ) ≡ �(p, u, τ ), we have

∂�(p, u, τ )

∂τ
= [2i sin(p + �τ) sin(u/2) − �] × �(p, u, τ ) +

�

2π

∫ π

−π

�(p − q, u, τ ) dq.

(24)
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Figure 4. Plot of mean-squared displacement 〈x2(τ, �)〉 versus scaled time τ and dimensionless

decohering factor � = γ0
h̄�2

E0δ2
0

(proportional to inverse of radiative lifetime of excited state). One

can clearly identify ‘a peculiar transition point’ near � = 0.5, below the transition point 〈x2(τ, �)〉
increases with increasing � and above the transition point mean-squared displacement decreases
with increasing �. Oscillations smooth away as � increases. Here � = 0.5.

Figure 5. Enhancement of diffusion with increase in �. The top most curve is for � = 0.3,
central for � = 0.2 and the lowest for � = 0.1 (for � < 0.5). With constant detuning parameter
� = 2. As � decreases, the oscillations in the mean-squared displacement increases but after
a long time oscillations vanish and the mean-squared displacement goes linearly with time as it
should. Oscillations are a signature of WSL due repeated reflections from nearby states.

The solution of first-order PDE (equation (24)) is given in appendix B; we finally obtain

〈x2(τ )〉 = �

�2 + �2
τ +

[
�2 − �2

(�2 + �2)2

]
{1 − e−�τ cos �τ } − 2��

(�2 + �2)2
e−�τ sin �τ. (25)

Note that � (dimensionless decohering factor) = γ h̄
E0

, τ (scaled time) = t E0
h̄

and �

(dimensionless detuning) = h̄ω−α
E0

. (Equation (25)) is an important result of the present
work. The mean squared displacement from above equation is plotted in figures 4–7.

For two special cases of interest in a long time limit, equation (25) gives:

(A) on-resonance, i.e., (detuning) � = h̄ω−α
E0

= 0,

〈x2(t)〉 = E2
0

h̄2γ
t (diffusive). (26)

(B) off-resonance (finite detuning) � �= 0,

〈x2(t)〉 = E2
0γ

h̄2γ 2 + (h̄ω − α)2
t (diffusive − controllable) (27)

7
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Figure 6. Suppression of diffusion due to increase in � (for � > 0.5). The top most curve is for
the lowest damping constant � = 0.5, central for � = 1 and lowest for � = 2. With constant
detuning parameter � = 0.5.

Figure 7. The effect of detuning � ∼ h̄ω−α
E0

on mean-squared displacement. The top most curve
is for the resonance case, no detuning � = 0, central for � = 0.5, and lowest for � = 1. With
constant � = 0.08. As the detuning goes up, the oscillations in the mean-squared displacement
increase, but we have the same expected evolution, short time, τ 2 rise, then oscillations and after
a long time oscillations vanish and the mean-squared displacement goes linearly with time.

which indicates diffusion, but with a diffusion constant

D = E2
0γ

2[h̄2γ 2 + (h̄ω − α)2]
= E2

0

2h̄2
[
γ0

(
�

ωL−ω0

)2
+ [(ω−ωB)(ωL−ω0)]2

γ0�2

] , (28)

tunable with the external derive of frequency ω. This is one of the main results of
this work. The energy-level spacing α = Fd = ωBh̄ between the WSL states can be
controlled by the imparted acceleration for the optical lattice case and by electrostatic
field E as α = eE · a for the semiconductor superlattice case. Thus α and ω acts as
control parameters in an experiment. The diffusion coefficient becomes maximum in the
on-resonance case:

ωc = α

h̄
= Fd

h̄
= ωB (Bloch frequency)

8
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with

D = β2

2γ
= E2

0

2γ0h̄
2

[
ωL − ω0

�

]2

. (29)

which is exactly equation (17), identifying E0 with V .

3. Discussion

We have studied some transport properties of cold atoms in an accelerated and harmonically
driven optical lattice in the presence of decohering effects due to spontaneous emission. The
novelty of the work is a tunable diffusion coefficient and the possibility at controlling the
diffusive transport by external control parameters. We consider a practically important case,
in which our system (an atom on an tilted optical lattice) is present in an external ac drive with
the wavelength longer than the lattice period, so as to subtend a strong dipolar matrix element
between the neighboring WSL states. We have obtained several interesting results about the
mean-squared displacement (figures 4–7). Our main result is a tunable diffusion coefficient
(equation (28)), which becomes maximum when ωac = ωBloch (equation (29)) (i.e., the drive
frequency is equal to Bloch frequency). Similar effects have been observed for ultracold
bosonic atoms, i.e., a system of ultracold bosonic atoms in a tilted optical lattice can become
superfluid (Mott-insulator to superfluid transition) in response to resonant ac forcing [22–25].
The underlying mechanism is the dynamical disappearance of the energy gap due to static tilt
and external ac drive. There is a possibility of studying the effect of decoherence on this kind
of ac induced flow.

This diffusion maximization of a single atom should be contrasted with ‘localization’
(dynamical localization of dynamical disorder [26, 27] and Anderson localization of static
disorder [28]). Dynamical localization is related to the suppression of electron transport in a
Bloch band driven by an ac electric field, which is explained on the basis of Floquet theory
of Bloch band collapse [29]. Here we report an opposite effect, a kind of ‘maximum non-
localization’. The physical mechanism under action appears to be the simultaneous effects
of decoherence (due to spontaneous emission) and dynamical disappearance of energy gap
between nearby states of WSL, when the drive photon energy is equal to the WSL gap energy
because these are the two main physical effects under action.

For numerical estimation, consider that we have Na atoms (consider a very dilute atomic
sample so that one can neglect atom–atom interactions) on an optical lattice created by using
two counter propagating laser beams of wavelength λ = 852 nm [25]. The resulting lattice
spacing is dL = λ/2 = 0.426 µm. It is accelerated at a rate a = dL

d
dt

�ν = 1000 ms−2.
Here �ν is the difference between the frequencies of two lattice beams. The diffusion
will be maximum for ωac = ωBloch = Fd

h̄
= madL

h̄
� 154 kHz, and the separation

(α = Fd) between nearest WSL states will be of the order of 100 peV. The depth V0

of the resulting periodic potential can be 6Erec, Erec = h̄2π2

2md2
L

. For the estimation of the
diffusion coefficient at resonance between WSL and an external ac field, but in the far
detuned regime between atom and optical-lattice laser field, where only virtual transitions
can occur, and one can ignore the internal structure of the atom (adiabatic elimination
procedure), we take Rabi frequency � = 2µEL/h̄ = 2π × 34.5 × 107 Hz, detuning
δL = 2π × 5.4 × 109 Hz, rate of spontaneous emission (for sodium atoms) γ0 = 6.2 × 107 Hz

[18]. With this D = E2
0d2

2γ0h̄
2

[
δL

�

]2 = 1.976 × 10−6 s (in terms of scaled units d = 1
(unit lattice spacing), E0 (amplitude of transfer matrix element) = 1, h̄ = 1).

9
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Appendix A. No acceleration and no ac drive

We take the time(scaled) laplace transform ρ̃(p, u, s) = ∫ ∞
0 e−sτ ρ(p, u, τ ) dτ of

equation (14). and get

sρ̃(p, u, s) − ρ(p, u, t = 0) = φ(p, u)ρ̃(p, u, s) + �χ̃(u, s). (A.1)

We want to calculate the value of ρ(p, u, t = 0). We know that

ρm,n(t = 0) = 〈C∗
m(t = 0)Cn(t = 0)〉 = δm,0δn,0

ρ̃(k1, k2, t = 0) =
∑
m,n

ρm,n(t = 0) e−imk1 eink2 =
∑
m,n

δm,0δn,0 e−imk1 eink2 (A.2)

ρ(p, u, t = 0) =
∑
m,n

δm,0δn,0 e−im(p+u/2) ein(p−u/2) = 1,

and with this we get

ρ̃(p, u, s) = 1 + �χ̃(u, s)

s − φ(p, u)
. (A.3)

Summing the above equation i.e., equation (A.3) over p∑
p

ρ̃(p, u, s) =
∑

p

1 + �χ̃(u, s)

s − φ(p, u)
,

1

2π

∫ π

−π

ρ̃(p, u, s) dp = [1 + �χ̃(u, s)]

2π

∫ π

−π

dp

s − φ(p, u)
.

(A.4)

By re-arrangements we get

χ̃ (u, s) = i

1 − I�
, I = 1

2π

∫ π

−π

dp

s − φ(p, u)
. (A.5)

Now, we want to find the mean and mean-squared displacement, as we know

χ̃ (u, s) = 1

2π

∫ π

−π

ρ̃(q, u, s) dq

= 1

2π

∫ π

−π

∑
m,n

ρ̃m,n(s) e−im(p+u/2) ein(p−u/2) dp

= 1

2π

∫ π

−π

∑
m,n

ρ̃m,n(s) e−i(m+n) u
2 ei(n−m)p dp

=
∑
m,n

δm,nρ̃m,n(s) e−i(m+n) u
2 =

∑
n

ρ̃n,n(s) e−inu

δ = 1

2π

∫ π

−π

ei(n−m)p dp.

(A.6)

The mean displacement in the s-domain is given by
∑

n nρ̃n,n(s), noting that

∂χ̃(u, s)

∂u
= −i

∑
n

nρ̃n,n(s) e−inu.

10
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We have

〈x̃(s)〉 = i

[
∂χ̃(u, s)

∂u

]
u=0

. (A.7)

Similarly, the mean-squared displacement is given by

〈x̃2(s)〉 =
∑

n

n2ρ̃n,n(s) = −
[
∂2χ̃(u, s)

∂u2

]
u=0

. (A.8)

Now differentiating equation (A.5), wrt u and finding the differentials of the integral I at u = 0,
using equations (A.7) and (A.8), we obtain

〈x̃(s)〉 = 0, 〈x(t)〉 = 0, (A.9)

〈x̃2(s)〉 = 1

s2(s + �)
. (A.10)

After inversion, we get the mean-squared displacement (equation (15))

Appendix B. An accelerated lattice in an external ac drive

∂�(p, u, τ )

∂τ
= [2i sin(p + �τ) sin(u/2) − �] × �(p, u, τ )

+
�

2π

∫ π

−π

�(p − q, u, τ ) dq. (B.1)

The solution of first-order PDE (equation (B.1)) is

�(p, u, τ ) = � e−ϕ(p,u,τ )

∫
eϕ(p,u,τ )χ̄ (u, τ ) dτ + C1(p, u) e−ϕ(p,u,τ ). (B.2)

In the above, we have defined

χ̄ (u, τ ) = 1

2π

∫ π

−π

�(p − q, u, τ ) dq = 1

2π

∫ π

−π

�(q, u, τ ) dq, (B.3)

ϕ(p, u, τ ) = −
∫

[2i sin(p + �τ) sin(u/2) − �] dτ

= 2i

�
cos(p + �τ) sin(u/2) + �τ. (B.4)

Summing over p,∑
p

�(p, u, τ ) = �
∑

p

e−ϕ(p,u,τ )

∫
eϕ(p,u,τ )χ̄ (u, τ ) dτ +

∑
p

C1(p, u) e−ϕ(p,u,τ ), (B.5)

1

2π

∫ π

−π

dp �(p, u, τ ) = �

2π

∫ π

−π

dp e−ϕ(p,u,τ )

×
∫

eϕ(p,u,τ )χ̄ (u, τ ) dτ +
1

2π

∫ π

−π

dpC1(p, u) e−ϕ(p,u,τ ), (B.6)

χ̄ (u, τ ) = �

2π

∫ π

−π

e−ϕ(p,u,τ )I4 dp +
1

2π

∫ π

−π

C1(p, u) e−ϕ(p,u,τ ) dp,

(B.7)
I4 =

∫
eϕ(p,u,τ )χ̄ (u, τ ) dτ.

11
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To calculate C1(p, u), we put τ = 0 in equation (B.7), and use the initial condition (7), i.e.,
ρ̄mn(t = 0) = ρmn(t = 0) = δm0δn0, we have

�(p, u, τ = 0) =
∑
m,n

ρ̄mn(0) e−im(p−u/2) ein(p+u/2)

=
∑
m,n

δm0δn0 e−im(p−u/2) ein(p+u/2) = 1. (B.8)

So,

C1(p, u) = eϕ(p,u,0) − �I4τ , I4τ =
[∫

eϕ(p,u,τ )χ̄ (u, τ ) dτ

]
τ=0

. (B.9)

Equations (B.7) and (B.9) gives

χ̄ (u, τ ) = �

2π

∫ π

−π

e−ϕ(p,u,τ )I4 dp +
1

2π

∫ π

−π

[eϕ(p,u,0) − �I4τ ]e−ϕ(p,u,τ ) dp,

I4 =
∫

eϕ(p,u,τ )χ̄ (u, τ ) dτ,

I4τ =
[∫

eϕ(p,u,τ )χ̄ (u, τ ) dτ

]
τ=0

,

ϕ(p, u, τ ) = 2i

�
cos(p + �τ) sin(u/2) + �τ.

(B.10)

As we have, 〈x(τ)〉 = i ∂χ̄(u,τ )

∂u
. In order to calculate the mean displacement, we differentiate

the above integral equation for the reduced-transformed density matrix equation (B.10) wrt u
and set u = 0. Noting that

χ̄ (u, τ ) = 1

2π

∫ π

−π

�(q, u, τ ) dq

= 1

2π

∫ π

−π

∑
m,n

ρmn(τ ) eiδ(m−n)τ e−im(p−u/2) ein(p+u/2) dp,

χ̄(0, τ ) = 1

2π

∫ π

−π

∑
m,n

ρmn(τ ) eiδ(m−n)τ ei(n−m)p dp

=
∑
m,n

δmnρmn(τ ) eiδ(m−n)τ = 1,

(B.11)

we finally obtain

〈x(τ)〉 =
[
∂χ̄(u, τ )

∂u

]
u=0

= 0. (B.12)

To calculate mean-squared displacement = −[
∂2χ̄(u,τ )

∂u2

]
u=0, we solve equation (B.10) by

doubly differentiating it wrt u and then setting u = 0 to get[
∂2χ̄ (u, τ )

∂u2

]
u=0

= � e−�τ

∫
e�τ

[
∂2χ̄ (u, τ )

∂u2

]
u=0

dτ

− 1

(�2 + �2)
(1 − e−�τ cos �τ) +

�

�(�2 + �2)
e−�τ sin �τ

− 2π

[∫
e�τ

[
∂2χ̄(u, τ )

∂u2

]
u=0

dτ

]
τ=0

e−�τ . (B.13)

12
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Equation (B.13) is solved by the laplace transform method. In equation (B.13), we define
e�τ

[
∂2χ̄(u,τ )

∂u2

]
u=0 = f (τ). With this, f (τ) takes the following form:

f (τ) = �

∫
f (τ) dτ − e�τ

�2 + �2
+

cos �τ

�2 + �2
+

sin �τ

�(�2 + �2)
+ constant. (B.14)

Differentiating the above integral equation, we get

df (τ)

dτ
= �f (τ) − � e�τ

�2 + �2
+

� cos �τ

�2 + �2
− � sin �τ

(�2 + �2)
. (B.15)

With the initial condition f (τ = 0) = 0, i.e., the mean-squared displacement is zero at time
τ = 0, the above equation can be readily solved to get the mean-squared displacement as
given in equation (25).
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